Abstract:Analog machine-learning hardware platforms promise greater speed and energy efficiency than their digital counterparts. Specifically, over-the-air analog computation allows offloading computation to the wireless propagation through carefully constructed transmitted signals. In addition, reconfigurable intelligent surface (RIS) is emerging as a promising solution for next-generation wireless networks, offering the ability to tailor the communication environment. Leveraging the advantages of RIS, we design and implement the ordinary differential equation (ODE) neural network using over-the-air computation (AirComp) and demonstrate its effectiveness for dual tasks. We engineer the ambient wireless propagation environment through distributed RISs to create an architecture termed the over-the-air ordinary differential equation (Air-ODE) network. Unlike the conventional digital ODE-inspired neural network, the Air-ODE block utilizes the physics of wave reflection and the reconfigurable phase shifts of RISs to implement an ODE block in the analog domain, enhancing spectrum efficiency. Moreover, the advantages of Air-ODE are demonstrated in a deep learning-based semantic communication (DeepSC) system by extracting effective semantic information to reduce the data transmission load, while achieving the dual functions of image reconstruction and semantic tagging simultaneously at the receiver. Simulation results show that the analog Air-ODE network can achieve similar performance to the digital ODE-inspired network. Specifically, for the image reconstruction and semantic tagging task, compared with the analog network without the Air-ODE block, the Air-ODE block can achieve around 2 times gain in both reconstruction quality and tagging accuracy.
Abstract:The increase in antenna apertures and transmission frequencies in next-generation wireless networks is catalyzing advancements in near-field communications (NFC). In this paper, we investigate secure transmission in near-field multi-user multiple-input single-output (MU-MISO) scenarios. Specifically, with the advent of extremely large-scale antenna arrays (ELAA) applied in the NFC regime, the spatial degrees of freedom in the channel matrix are significantly enhanced. This creates an expanded null space that can be exploited for designing secure communication schemes. Motivated by this observation, we propose a near-field dynamic hybrid beamforming architecture incorporating artificial noise, which effectively disrupts eavesdroppers at any undesired positions, even in the absence of their channel state information (CSI). Furthermore, we comprehensively analyze the dynamic precoder's performance in terms of the average signal-to-interference-plus-noise ratio, achievable rate, secrecy capacity, secrecy outage probability, and the size of the secrecy zone. In contrast to far-field secure transmission techniques that only enhance security in the angular dimension, the proposed algorithm exploits the unique properties of spherical wave characteristics in NFC to achieve secure transmission in both the angular and distance dimensions. Remarkably, the proposed algorithm is applicable to arbitrary modulation types and array configurations. Numerical results demonstrate that the proposed method achieves approximately 20\% higher rate capacity compared to zero-forcing and the weighted minimum mean squared error precoders.
Abstract:The stacked intelligent metasurface (SIM), comprising multiple layers of reconfigurable transmissive metasurfaces, is becoming an increasingly viable solution for future wireless communication systems. In this paper, we explore the integration of SIM in a multi-antenna base station for application to downlink multi-user communications, and a realistic power consumption model for SIM-assisted systems is presented. Specifically, we focus on maximizing the energy efficiency (EE) for hybrid precoding design, i.e., the base station digital precoding and SIM wave-based beamforming. Due to the non-convexity and high complexity of the formulated problem, we employ the quadratic transformation method to reformulate the optimization problem and propose an alternating optimization (AO)-based joint precoding framework. Specifically, a successive convex approximation (SCA) algorithm is adopted for the base station precoding design. For the SIM wave-based beamforming, two algorithms are employed: the high-performance semidefinite programming (SDP) method and the low-complexity projected gradient ascent (PGA) algorithm. In particular, the results indicate that while the optimal number of SIM layers for maximizing the EE and spectral efficiency differs, a design of 2 to 5 layers can achieve satisfactory performance for both. Finally, numerical results are illustrated to evaluate the effectiveness of the proposed hybrid precoding framework and to showcase the performance enhancement achieved by the algorithm in comparison to benchmark schemes.
Abstract:Typical reconfigurable intelligent surface (RIS) implementations include metasurfaces with almost passive unit elements capable of reflecting their incident waves in controllable ways, enhancing wireless communications in a cost-effective manner. In this paper, we advance the concept of intelligent metasurfaces by introducing a flexible array geometry, termed flexible intelligent metasurface (FIM), which supports both element movement (EM) and passive beamforming (PBF). In particular, based on the single-input single-output (SISO) system setup, we first compare three modes of FIM, namely, EM-only, PBF-only, and EM-PBF, in terms of received signal power under different FIM and channel setups. The PBF-only mode, which only adjusts the reflect phase, is shown to be less effective than the EM-only mode in enhancing received signal strength. In a multi-element, multi-path scenario, the EM-only mode improves the received signal power by 125% compared to the PBF-only mode. The EM-PBF mode, which optimizes both element positions and phases, further enhances performance. Additionally, we investigate the channel estimation problem for FIM systems by designing a protocol that gathers EM and PBF measurements, enabling the formulation of a compressive sensing problem for joint cascaded and direct channel estimation. We then propose a sparse recovery algorithm called clustering mean-field variational sparse Bayesian learning, which enhances estimation performance while maintaining low complexity.
Abstract:Reconfigurable intelligent surfaces (RIS) can reshape the characteristics of wireless channels by intelligently regulating the phase shifts of reflecting elements. Recently, various codebook schemes have been utilized to optimize the reflection coefficients (RCs); however, the selection of the optimal codeword is usually obtained by evaluating a metric of interest. In this letter, we propose a novel weighted design on the discrete Fourier transform (DFT) codebook to obtain the optimal RCs for RIS-assisted point-to-point multiple-input multiple-output (MIMO) systems. Specifically, we first introduce a channel training protocol where we configure the RIS RCs using the DFT codebook to obtain a set of observations through the uplink training process. Secondly, based on these observed samples, the Lagrange multiplier method is utilized to optimize the weights in an iterative manner, which could result in a higher channel capacity for assisting in the downlink data transmission. Thirdly, we investigate the effect of different codeword configuration orders on system performance and design an efficient codeword configuration method based on statistical channel state information (CSI). Finally, numerical simulations are provided to demonstrate the performance of the proposed scheme.
Abstract:A flexible intelligent metasurface (FIM) is composed of an array of low-cost radiating elements, each of which can independently radiate electromagnetic signals and flexibly adjust its position through a 3D surface-morphing process. In our system, an FIM is deployed at a base station (BS) that transmits to multiple single-antenna users. We formulate an optimization problem for minimizing the total downlink transmit power at the BS by jointly optimizing the transmit beamforming and the FIM's surface shape, subject to an individual signal-to-interference-plus-noise ratio (SINR) constraint for each user as well as to a constraint on the maximum morphing range of the FIM. To address this problem, an efficient alternating optimization method is proposed to iteratively update the FIM's surface shape and the transmit beamformer to gradually reduce the transmit power. Finally, our simulation results show that at a given data rate the FIM reduces the transmit power by about $3$ dB compared to conventional rigid 2D arrays.
Abstract:Flexible intelligent metasurfaces (FIMs) constitute a promising technology that could significantly boost the wireless network capacity. An FIM is essentially a soft array made up of many low-cost radiating elements that can independently emit electromagnetic signals. What's more, each element can flexibly adjust its position, even perpendicularly to the surface, to morph the overall 3D shape. In this paper, we study the potential of FIMs in point-to-point multiple-input multiple-output (MIMO) communications, where two FIMs are used as transceivers. In order to characterize the capacity limits of FIM-aided narrowband MIMO transmissions, we formulate an optimization problem for maximizing the MIMO channel capacity by jointly optimizing the 3D surface shapes of the transmitting and receiving FIMs, as well as the transmit covariance matrix, subject to a specific total transmit power constraint and to the maximum morphing range of the FIM. To solve this problem, we develop an efficient block coordinate descent (BCD) algorithm. The BCD algorithm iteratively updates the 3D surface shapes of the FIMs and the transmit covariance matrix, while keeping the other fixed. Numerical results verify that FIMs can achieve higher MIMO capacity than traditional rigid arrays. In some cases, the MIMO channel capacity can be doubled by employing FIMs.
Abstract:Intelligent surfaces represent a breakthrough technology capable of customizing the wireless channel cost-effectively. However, the existing works generally focus on planar wavefront, neglecting near-field spherical wavefront characteristics caused by large array aperture and high operation frequencies in the terahertz (THz). Additionally, the single-layer reconfigurable intelligent surface (RIS) lacks the signal processing ability to mitigate the computational complexity at the base station (BS). To address this issue, we introduce a novel stacked intelligent metasurfaces (SIM) comprised of an array of programmable metasurface layers. The SIM aims to substitute conventional digital baseband architecture to execute computing tasks with ultra-low processing delay, albeit with a reduced number of radio-frequency (RF) chains and low-resolution digital-to-analog converters. In this paper, we present a SIM-aided multiuser multiple-input single-output (MU-MISO) near-field system, where the SIM is integrated into the BS to perform beamfocusing in the wave domain and customize an end-to-end channel with minimized inter-user interference. Finally, the numerical results demonstrate that near-field communication achieves superior spatial gain over the far-field, and the SIM effectively suppresses inter-user interference as the wireless signals propagate through it.
Abstract:Intelligent metasurfaces have demonstrated great promise in revolutionizing wireless communications. One notable example is the two-dimensional (2D) programmable metasurface, which is also known as reconfigurable intelligent surfaces (RIS) to manipulate the wireless propagation environment to enhance network coverage. More recently, three-dimensional (3D) stacked intelligent metasurfaces (SIM) have been developed to substantially improve signal processing efficiency by directly processing analog electromagnetic signals in the wave domain. Another exciting breakthrough is the flexible intelligent metasurface (FIM), which possesses the ability to morph its 3D surface shape in response to dynamic wireless channels and thus achieve diversity gain. In this paper, we provide a comprehensive overview of these emerging intelligent metasurface technologies. We commence by examining recent experiments of RIS and exploring its applications from four perspectives. Furthermore, we delve into the fundamental principles underlying SIM, discussing relevant prototypes as well as their applications. Numerical results are also provided to illustrate the potential of SIM for analog signal processing. Finally, we review the state-of-the-art of FIM technology, discussing its impact on wireless communications and identifying the key challenges of integrating FIMs into wireless networks.
Abstract:Stacked intelligent metasurfaces (SIMs) represent a novel signal processing paradigm that enables over-the-air processing of electromagnetic waves at the speed of light. Their multi-layer architecture exhibits customizable computational capabilities compared to conventional single-layer reconfigurable intelligent surfaces and metasurface lenses. In this paper, we deploy SIM to improve the performance of multi-user multiple-input single-output (MISO) wireless systems through a low complexity manner with reduced numbers of transmit radio frequency chains. In particular, an optimization formulation for the joint design of the SIM phase shifts and the transmit power allocation is presented, which is efficiently tackled via a customized deep reinforcement learning (DRL) approach that systematically explores pre-designed states of the SIM-parametrized smart wireless environment. The presented performance evaluation results demonstrate the proposed method's capability to effectively learn from the wireless environment, while consistently outperforming conventional precoding schemes under low transmit power conditions. Furthermore, the implementation of hyperparameter tuning and whitening process significantly enhance the robustness of the proposed DRL framework.